Potent and Selective Inhibition of a Single AMPA Receptor Subunit by an RNA Aptamer*
نویسندگان
چکیده
Inhibitors of AMPA-type glutamate ion channels are useful as biochemical probes for structure-function studies and as drug candidates for a number of neurological disorders and diseases. Here we describe the identification of an RNA inhibitor or aptamer by an in vitro evolution approach and a characterization of its mechanism of inhibition on the sites of interaction by equilibrium binding and on the receptor channel-opening rate by a laser-pulse photolysis technique. Our results show that the aptamer is a noncompetitive inhibitor that selectively inhibits the GluA2Qflip AMPA receptor subunit without any effect on other AMPA receptor subunits or kainate or NMDA receptors. On the GluA2 subunit, this aptamer preferentially inhibits the flip over the flop variant. Furthermore, the aptamer preferentially inhibits the closed-channel state of GluA2Qflip with a KI = 1.5 μM or by ~15-fold over the open-channel state. The potency and selectivity of this aptamer rival those of small molecule inhibitors. Together, these properties make this aptamer a promising candidate for the development of water-soluble, highly potent and GluA2 subunit-selective drugs. ________________________________________
منابع مشابه
One aptamer, two functions: the full-length aptamer inhibits AMPA receptors, while the short one inhibits both AMPA and kainate receptors
AMPA and kainate receptors, along with NMDA receptors, are distinct subtypes of glutamate ion channels. Excessive activity of AMPA and kainate receptors has been implicated in neurological diseases, such as epilepsy and neuropathic pain. Antagonists that block their activities are therefore potential drug candidates. In a recent article in the Journal of Biological Chemistry by Jaremko et al. 2...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کاملOne RNA aptamer sequence, two structures: a collaborating pair that inhibits AMPA receptors
RNA is ideally suited for in vitro evolution experiments, because a single RNA molecule possesses both genotypic (replicable sequence) and phenotypic (selectable shape) properties. Using systematic evolution of ligands by exponential enrichment (SELEX), we found a single 58-nt aptamer sequence that assumes two structures with different functions, both of which are required to inhibit the GluR2 ...
متن کاملA novel label-free cocaine assay based on aptamer-wrapped single-walled carbon nanotubes
Objective(s): This paper describes a selective and sensitive biosensor based on the dissolution and aggregation of aptamer wrapped single-walled carbon nanotubes. We report on the direct detection of aptamer–cocaine interactions, namely between a DNA aptamer and cocaine molecules based on near-infrared absorption at λ807. Materials and Methods: First a DNA aptamer recognizing cocaine was non-co...
متن کاملتاثیر محرومیت از بینایی طی دوره بحرانی تکامل مغز بر بیان زیرواحدهای گیرنده AMPA در هیپوکامپ موش صحرایی
Background: Environmental signals have an essential role in the maturation of neural circuits during critical period of brain development. It has been shown that, change in visual signals during critical period of brain development changes structure and function of glutamate receptors in the visual cortex. After processing in visual cortex, part of visual signals goes to the hippocampus and mak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011